

DC-3000C 系列超声波测厚仪

使 用 手 册

地址:北京市海淀区西北旺百旺茉莉园 38 号楼 108 邮编: 100094

电话: (010) 51659992 传真: (010) 62314006

网址: http://www.dgc-ndt.com.cn 电邮: instrument@dgc-ndt.com.cn

目 录

一、概述	3
二、技术参数	3
三、测量原理	4
四、整机、部件及内容	4
【4.1】仪器整机	4
【4.2】显示部分	5
【4.3】键盘部分	6
五、测量前的准备	6
【5.1】仪器准备	6
【5.2】探头的选择	7
【5.3】被测体表面的处理技术	7
六、仪器的功能应用	8
【6.1】仪器开机	8
【6.2】测量方法	8
【6.3】仪器的校准	8
【6.4】仪器操作	9
〖6.4.1〗仪器的测量	10
《6.4.1.1》发射-回波模式	10
《6.4.1.2》回波-回波模式	11
〖6.4.2〗仪器的设置	11
《6.4.2.1》声速设定	12
《6.4.2.2》精度和制式	13
《6.4.2.3》探头校准	14

DC-3000C 系列超声波测厚仪

	14
《6.4.3.1》存储设定	14
《6.4.3.2》存储读取	15
《6.4.3.3》存储全部清零	15
《6.4.3.4》数据输出	16
【6.4.4】仪器的功能	16
《6.4.4.1》关机时间设定	17
《6.4.4.2》增益设定	17
《6.4.4.3》对比度设定	18
《6.4.4.4》恢复原厂设定设定	18
《6.4.4.5》厂商信息	19
七、仪器快捷功能	19
八、测量应用技术	19
【8.1】测量方法	19
【8.2】管壁测量法	20
九、维护及注意事项	20
【9.1】电源检查	20
【9.2】注意事项	20
【9.2.1】一般注意事项	20
【9.2.2】测量中应注意事项	20
常用材料声速表	21

一、概述

DC-3000C 系列智能型超声波测厚仪,采用微处理器技术,利用超声波测量原理,即可以对金属及其他多种材料的厚度、声速进行测量,还可以穿透油漆层测量工件本体的厚度,大大提高了工作效率。

本系列仪器具有自动零点校准,自动识别探头等高智能化功能,可以 最大限度的消除由于人为误操作造成的测量误差。

本系仪器列包含 DC-3000C 和 DC-3020C 两个型号。

DC-3000C 通用型,不带存储功能。

DC-3020C 通用型,可存储 5,200 组测量值。

在仪器使用前,请详尽阅读本使用手册,以便了解仪器的功能,掌握 仪器的使用方法。

二、技术参数

显 示:320X240 LCD 点阵彩屏液晶显示

显示位数:四位

测量范围: T-E 模式下: 0.65mm~400mm

E-E 模式下: 3.0mm~25mm

示值精度:±0.01mm 或±0.1mm

测量精度:显示精度为 0.1 时:

0.7mm ~ 99.9mm ±0.1mm

100.0mm ~ 400.0mm ≤0.3%Hmm

显示精度为 0.01 时:

0.65mm ~ 9.99mm ±0.04mm

10.0mm ~ 99.99mm $\pm (0.1\% + 0.04)$ mm

100.0mm ~ 400.0mm ≤0.3%Hmm

注:H为测量的厚度值

声速范围: 1000~9999m/s

数据存储: 5,200 组数据 (不适用 DC-3000C)

测量速度:普通测量2次/秒 高速测量10次/秒

自动关机:1分钟、3分钟、5分钟可选

电 源:二节五号(AA)电池,可连续工作不小于 48 小时。 **使用环境:**使用温度:-20℃~50℃ 存储温度:-20℃~50℃

外形尺寸:133mm(L)×75mm(W)×29mm(H)

重 量:260g(含电池)

三、测量原理

由探头将超声波脉冲透过耦合剂到达被测体,一部分被物体表面反射, 探头接收由被测体地面反射的回波,精确测量超声波的往返时间,并计算 出厚度,再用数字显示出来。

四、整机、部件及内容

【4.1】仪器整机

①液晶屏 ②探头插座、识别插针③仪器标牌(背面) ④电池仓(背面) ⑤校准试块 ⑥USB 接口 ⑦键盘

【4.2】显示部分

① 测量数值

当仪器处于测量状态时,测量数值呈现为白色。当用户完成测量并将探 头从被测工件表面移开,此时测量数值冻结于屏幕上,呈现为蓝色。

- ② 当前选择的声速
- ③ 选择的探头
- ④ 当前选择的仪器增益
- ⑥ 测量制式
- ⑦ 测量模式
- ⑧ 仪器存储当前文件和地址 (DC-3000C 不适用)

【4.3】键盘部分

① 电源开关键,返回测量界面键

② 仪器菜单键

③ 返回键,存储键(测量界面下, DC-3000C 不适用)

④ 背光调节键

⑥ 🕌 向下键、零点校准键(测量界面下)

⑦ 🕌 向左键

⑧ 之 向右键

五、测量前的准备

【5.1】仪器准备

新购仪器请参照如下标准配置查对仪器及附件,如有缺失或仪器损坏,请勿使用,并尽快与厂家联系。

主机 一台

探头 D5301 一只

耦合剂 一瓶

线缆 -条 (DC-3020C)

仪器箱 一只

使用手册 一份

保修卡 一份

五号电池 二节

【5.2】探头的选择

用户应根据测试条件、测试材料及测试要求选用符合条件的探头,以最大限度地保证测试数据的可靠性和准确性。下表给出仪器可选用探头的 名称、测量范围及适用温度。

型号	频率	测量范围	温度
D5008	5.0MHz	0.8mm ~ 300mm	<60°C
D5113	5.0MHz	2.0mm ~ 200mm	≤350°C
D7006	7.5MHz	0.65mm ~ 50mm	<60°C
D7004	10.0MHz	0.65mm ~ 20mm	<60°C
D2012	2.0MHz	2.0mm ~ 400mm	<60°C
D5301	5.0MHz	T-E 1.4mm ~ 200mm	<60°C
		E-E 3.0mm ~ 25mm	

D5008 型探头:多种情况均可选择此探头。如:测量表面为平面

或较大弧度,另外被测体的厚度超过 50mm。

D5113 型探头:用于温度小于 350℃的材料的测量。

D7006 型探头:主要用于薄壁及小弧面的测量。

D7004 型探头:主要用于薄壁及小弧面的测量。

D2012 型探头:主要用于铸铁等粗晶材质的测量。

D5301 型探头:用于回波模式测量。

【5.3】被测体表面的处理技术

若被测体表面很粗糙或锈蚀严重, 请用以下方法处理;

- 1、利用除锈剂、钢丝刷或砂纸处理被测体表面;
- 2、在被测体表面使用耦合剂;
- 3、在同一点附近多次测量。

六、仪器的功能应用

【6.1】仪器开机

插入探头后,按 键仪器开机。仪器显示:仪器编号、软件版本号,然后进入测量界面。

注:开机时没有插入探头,屏幕上会提示"请插入探头", 此时只需插入探头等待进入测量状态。

仪器进入测量状态,显示: 0.0mm 或 0.00mm (0.00in 或 0.000in 依用户设置而定)、声速值、选定的探头、当前测量模式等多种信息。

注:本机开机自动校准,请使用原厂探头。若使用其他探头,仪器无 法正常工作并显示"错误"。

【6.2】测量方法

本机具有开机自动校零功能,无需人工进行校准。开机后,请首先在被测工件的测量面涂上耦合剂(随仪器标配或自行购买均可),将探头放置在工件表面并施以一定的压力,测量数据将显示在仪器显示屏中。只有在测量符号量出现、且数据显示稳定时,才可认为此次测量是有效的测量。

【6.3】仪器的校准

仪器在使用初期或在使用的过程中均会出现测量偏差的问题,本章介绍引起随机偏差、系统偏差及计算偏差的三种原因及不同的校准办法:

- **1.随机偏差**:由于使用不同的探头、探头的磨损以及环境温度对探头的影响,均会构成测量偏差,此类偏差可以使用仪器提供的"自动校准"功能进行消除。方法如下:
 - ①将探头擦拭干净,不要残留耦合剂,探头置于空气中,

②按
健,自动校零后,进入测量状态。

注:校准时,一定要保持探头表面的清洁。若有耦合剂或其他污物则会影响校准时的精度。在测量环境的温度变化较大时,建议经常使用此功能, 以确保测量准确。

- **2.系统偏差**:由于更换新探头或由于其他原因引起的测量偏差,而且使用 "自动校准"功能也无法消除此偏差时(确信此偏差不是由于声速值的偏差 而引起的),使用"探头校准"功能可以将此偏差加以消除。使用的方法详见 6.4.2
- 3. 计算偏差:由于材料的多样性,同一种材料不同含量、不同工艺都会导致声速值的变化,而这一变化会最终引起测量出现偏差。若此偏差不足以影响到测量的准确性,则可以忽略;若偏差影响到测量的准确性,就必须要得到材料的准确声速值,此时就可以使用仪器提供的"声速测量"功能。使用方法详见 6.4.3.2

【6.4】仪器操作

本仪器提供测量、设置、存储、功能四个选项。按 键进入菜单,按 () 键选择内容。按 键确认该选项。按 () 设计,并进入测量状态。菜单显示如下图:

测量设置 存储 功能 ■发射—回波模式 2.回波—回波模式

测量 设置 **存储** 功能 ■存储设定 2.存储读取 3.存储全部清零

测量 设置 存储 功能 4.数据输出 <u>测量**设**</u> 存储 功能 ■声速设置 2.精度和制式 3.探头校准

测量 设置 存储 **则能** ■关机时间设定 2.增益设定 3.对比度设定

<u>测量 设置 存储 <mark>功能</u> 4.恢复原厂设定 5.厂商信息</u></mark>

【6.4.1】测量模式

本仪器提供2种测量模式:发射-回波和回波-回波。

<u>测量 设置 存储 功能</u> ■发射一回波模式 2.回波—回波模式

1. 发射-回波模式

发射-回波模式适用于普通测量。在此模式下,本机提供六种不同的测量方式,用户可根据自己的需求选择不同的测量方式。

5.上下限设定测量 6.快速测量

- ②按 键或 键选定"发射-回波模式"
- ③按 键进入该项目;

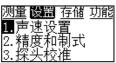
下面介绍一下6种测量方式的应用:

- 标准测量:显示当前测量值,满足常用的检测要求。
- ●最小值測量:在同一次测量过程中,只显示本次测量点的最小测量值。本功能满足曲面测量或需要选择最小值的测量环境。多适用于测量管壁厚度。注:对于铸铁和合金材料不建议使用此功能。
- ●**差分值测量**:能准确的显示出与用户设定的参考值的偏差,并显示正负 偏差值。适用于规定在偏差内即为合格产品的测量工作。
- ●**平均值测量:**提供 2-9 个点的测量,并显示平均值。适用于平面材料的

测量。

- ●上下限设定测量:设定上下限,当厚度超出设定界限时进行显示和声音 报警,比差分值测量宽泛。
- ●快速测量:以 10 次/秒的测量速度检测工件。一般应用于高温测量或有快速测量要求的测量中。测量过程中不显示厚度值,有连续提示音提示测量次数。测量结束后拿起探头,显示测量平均值。此功能多用于高温检测或生产过程快速检测。

2. 回波-回波模式


回波-回波的模式可以隔漆层检测基材厚度(漆层厚度小于 1mm)。 此功能只能使用原厂专用探头 D5301,其他探头不适用此功能。

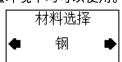
- ①按 健进入菜单;
- ②按 键或 键选择"测量"项,按 键或 键选定"回波-回波模式":

【6.4.2】仪器的设置

在**设置**功能中,给出三项对仪器精度有较大影响的选项,分别是:声速设置、精度与制式、探头校准。

①按 健进入菜单;

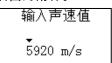
③按 键确认。


1. 声速设置

对于用超声波原理进行的检测, 声速的选择和设定有着重要的作用。不同材料的声速不同,如果声速的设置发生错误,将会导致测量数据的错误。对于一般精度要求的测试,使用已知材料的理论声速数值就可以满足测量要求。但在较高精度的测试中,声速数值将对测量数据的准确度产生较大的影响。为此在参考理论声速数值的基础上,一定要掌握正确测量材料精确声速值的方法。本机提供了 3 种选择声速的方法:

●材料选择

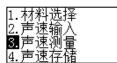
在此选项中,仪器预存了9种较为常用的材料声速值,可直接选用此方法简单直观,在一般测量环境中均可以使用。

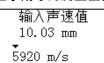


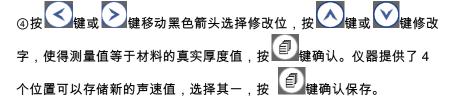
选择 围材料选择 ,按 键和 键选择材料,按 键确认保存并返回上一层菜单。

●声速输入

如若使用其他材料的声速值,就需要利用此功能进行手动输入。更多 材料的声速值请参考本手册后面的附件。






●声速测量

当对测量数据的精度有较高要求、或测量未知声速值的材料时,一定要使用此功能。方法如下:

- ① 取一块需确定声速值的材料(要使测量面与底面平行),用其他量具(比如卡尺、千分尺等)测得此材料的厚度,
- ②使用本仪器直接测量此材料,得到一厚度值。
- ③进入 31 声速测量 ,界面显示刚才的测量值。

●声速存储

可以在此功能中调用自定义的四个声速值。这四个声速值既可以由**声速输入**功能项中输入,也可由**声速测量**功能项中输入。

- 1.材料选择
- 2. 声速输入
- 3. 声谏测量
- 4.声速存储

2. 精度和制式

本仪器提供 0.1mm 和 0.01mm、0.01inch 和 0.001inch 选项。用户可根据实际情况选择测量精度与测量制式。在选择高精度时,要求被测工件的表面比较光滑,以便得到精确的测量数据。

<u>测量 **设**</u> 存储 功能 1. 声速设置 2. 精度和制式 3. 探头校准 1.0.1mm 2.0.01mm 3.0.01in 4.0.001in

①按 健进入菜单;

②按 键或 键选择"设置"项,按 键或 键选定"精度和制式"项目:

③按 健进入该项目;

④按 健及 健选定所需要内容;

⑤按望键确认保存并返回。

注: 当选用 D5113 或 D2012 探头时,建议使用 0.1mm 或 0.01in。

3. 探头校准

如果用户在正确校零后,并选择了正确的声速进行测量,但仍然会有 微小的误差显示,这可能是由系统误差产生的。这可以用本机提供的探头 校准进行修正。

注:请用户咨询厂家后再使用此功能。使用不当会造成仪器系统零点偏移。

【6.4.3】仪器的存储 (不适用于 DC-3000C)

此选项提供了有关数据存储及数据输出的功能。

测量设置存储功能

■ 仔傾设定 0 左移注開

|2.1子傾採収 |2.75||建会報達電

测量 设置 存储 功能

1. 存储设定

本机所提供的存储空间,以英文字母+数字的形式作为文件名。26 个字母表示数据存储位置,用户可随意设置。后面的 3 位数字表示当前存储的物理地址,开始于 001 结束至 200,每存一个数据自动累加一,不可修改。

注:设定好地址后,在测量时,需要每测量一次按 建一次以储存 本次测量值,不按 不储存。

测量 设置 <mark>存储</mark> 功能 ■存储设定 2.存储读取 3.存储全部清零

①按 键进入菜单;

②按 键及 键选择文件名,已经使用过的文件名将不再显示;

③按 健确定并返回;

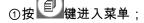
2. 存储读取

此功能准许客户通过选择文件名和物理地址查看存储数据。

测量 设置 存储 <u>功能</u> 1.存储设定 **2.**存储读取 3.存储全部清零

①按 健进入菜单;

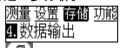
②按 键或 键选择文件名 A-Z, 按 键或 键查找物理地址, 屏幕同时显示当前地址的存储值:


③按 望返回;

3. 存储全部清零

本功能提供给用户对存储器进行全部清零。确定清零时,存储数据将被全部删除。

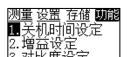
测量 设置 **存储** 功能 1.存储设定 2.存储设取 5.存储设取 是否执行操作 确认 **取**潤

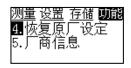


②按 键或 键选择"确认"或"取消",

③按 健确认:

4. 数据输出

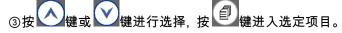

使用此功能,可以导出测量数据至电脑,并拷贝到 Word 或 Excel 软件进行进一步分析。



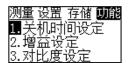
- ①按 健进入菜单;
- ②按 全键或 全键选择数据输出,此时仪器主机提示用户将电脑和主机连接
- ③使用标准配置中 USB 线连接机器与电脑,此时电脑端自动识别新硬件,成功识别后提示用户打开 CD 盘;
- ④点击 DATA 文件夹,所有存储信息以.TXT 文件存储,只有存储数据的文件将会显示在文件夹中;无存储数据文件不会显示;
- ⑤双击用户想要查看的文件,并可拷贝到电脑保存或通过打印机打印。

【6.4.4】仪器的功能

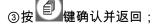
用户使用此项功能可以对仪器进行一些基本功能设定。



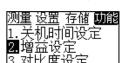
①按學課进入菜单

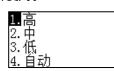

②按 键或 键选择到"功能"项目:

1. 关机时间设定


提供给用户 1 分钟、3 分钟、5 分钟三种自动关机时间选择。

2. 增益设定


用户在测量时,不同的被测材料、同种材料不同的状态均会对准确、 稳定的测量带来影响,为此就必须针对不同的检测对象、不同的检测环境 调整仪器的工作状态,以满足更多的测量。

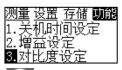

对大多数材料及测量条件,可以使用仪器的自动增益调节方式。但针 对比较特殊的测量,就必须手动调节仪器的增益。为此仪器提供四种不同 的增益工作方式:自动、低、中、高。

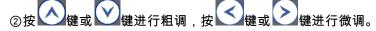
自动方式: 匹配不同的探头可以满足绝大部分的测量需求:

增益低:针对高散射、小衰减的材料,可以使用此方式;

增益中:可以针对多种测量使用; 增益高:针对高衰减的材料使用。

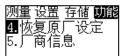
①按學課进入菜单




③按 健确认并返回

3. 对比度设定

提供给用户自行修改机器对比度,分为六档,初始值为"4"。



4. 恢复原厂设定

当仪器出现用户不能解决的软件问题时,使用该项目使仪器自动恢复 到厂家的出厂设定,问题大多可以得到解决。

是否执行操作 确认 **取消**

- ①按 健进入菜单,
- ②按 键或 选择"确认"或"取消";
- ③按 健确认,恢复出厂参数之后返回。按"取消",直接返回,不执行 此功能;

注:选择恢复出厂设置后,仪器中所有储存的数据将删除,请用户提前做 好数据输出和保存工作。

5. 厂商信息

进入该项目用户可以查看到此机器的详细信息。显示公司网站、电话号码、 机器软件版本号,探头出厂编号。

七.仪器的快捷功能

仪器在测量状态时,提供几种快捷键功能分别是:

1. 背光亮度功能

按 键可以快速进入背光调节菜单,进行明暗调整。

2. 校准功能

按 键可以实现仪器的手动校准功能,用以消除可能出现的测量偏差。

3. 数据存储功能

按 键可将已测量的数据存储到仪器中。一个测量数据只允许存储一次。

八、测量应用技术

【8.1】测量方法

提供多种参考测量方法:

- **1、单点测量**法,在被测体上任一点,利用探头测量,显示值即为厚度值。
- **2、两点测量法**,在被测体的同一点用探头进行二次测量,在二此测量中,探头的分割面成 90 度,较小值为厚度值。
- **3、多点测量法**,在直径约为 30 mm 的圆内进行多次测量,取其最小值为厚度值。

4、连续测量法,用单点测量法,沿指定线路连续测量,其间隔不小于 5 mm ,取其中最小值为被测体厚度值。

【8.2】管壁测量法

测量时,探头分割面可分别沿管材的轴线或垂直管材的轴线测量。若管径大时,测量应在垂直轴线的方向测量;管径小时,应在二方向测量,取其中最小值为厚度值。

九、维修及注意事项

【9.1】电源检查

电源电压低时,仪器显示低电压符号,此时应及时按要求更换电池, 以免影响测量精度。背光不能长时间打开,以免过快消耗电池电量。

【9.2】注意事项

【9.2.1】一般注意事项

避免仪器及探头受到强烈震动;避免将仪器置于过于潮湿的环境中; 插拔探头时,应捏住活动外套沿轴线用力,不可旋转探头,以免损坏探头 电缆芯线。

【9.2.2】测量中应注意事项

- ①测量时,只有测量显示符出现并稳定时,才是良好测量。
- ②若被测体表面存有大量耦合剂时,当探头离开被测体表面时,耦合剂会产生误测,因此测量结束时,应迅速将探头移开被测体表面。
 - ③若探头磨损,测量会出现示值不稳,应更换探头。

附件:常用材料声速表

材料	M/S	IN/US
铝	6305	0.250
铋	2184	0.086
黄铜	4394	0.173
钙	2769	0.109
铸铁	4572	0.18 (apprx)
康铜	5232	0.206
紫铜	4674	0.184
环氧树脂	2540	0.100 (apprx)
白铜	4750	0.187
玻璃	5664	0.223
火石玻璃	4267	0.168
金	3251	0.128
冰	3988	0.157
铁	5893	0.232
铅	2159	0.085
镁	5791	0.228
汞	1448	0.057
镍	5639	0.222
尼龙	2591	0.102(apprx)
石蜡	2210	0.087
铂	3962	0.156
有机玻璃	2692	0.106
聚苯乙烯	2337	0.092
陶瓷	5842	0.230(apprx)

PVC	2388	0.094
石英玻璃	5639	0.222
硫化橡胶	2311	0.091
银	3607	0.142
普通钢	5918	0.233
不锈钢	5664	0.223
斯太立硬质	6985	0.275(apprx)
聚四氟乙烯	1422	0.065
锡	3327	0.131
钛	6096	0.24
钨	5334	0.210
锌	4216	0.166
水	1473	0.058

注:所列的声速均为近似值,仅供参考。

用户手册如有改动,恕不另行通知。

若您在使用中出现问题,请速与本公司或当地代理商联系。

本仪器的所有售后服务由制造厂商负责,请您填好保修单后寄本公

司。

北京市德光电子公司

地址:北京市海淀区西北旺百旺茉莉园 38 号楼 108

邮编:100094

电话: 010-51659992 传真: 010-62314006

电邮: Instrument@dgc-ndt.com.cn

网址: www.dgc-ndt.com.cn